

The Novel Biological Phenomenon - Expression of Evolutionarily Novel Genes in Tumors

A.P. Kozlov

Biomedical Center and Dobzhansky Center of St. Petersburg University

A symposium to launch the Theodosius Dobrzhansky Center for Genome Informatics St. Petersburg State University April 27, 2012

Hypothesis

Tumors provide conditions for the expression of evolutionarily novel genes that originate in DNA of germ cells.

Kozlov 1979, 1996, 2010

Two approaches to study the hypothesis:

1 – to study evolutionary novelty of established tumor-specific sequences and/or genes
2 – to study tumor specificity of established evolutionarily novel genes

Baranova et al., 2001; Krukovskaya et al., 2005; Kozlov et al., 2006; Polena et al., 2007; Samusik et al., 2011; Polev et al., 2011

Two specificities were studied: tumor specificity of expression and evolutionary novelty

1. The specificity of tumor expression was studied using computational differential display approach (CDD) and cDNA panels from human normal and tumor tissues

2. Evolutionary novelty was studied with different molecular biological and bioinformatics approaches: Southern hybridization on evolutionary panels, molecular phylogenetic analysis, chained alignments of genomes, conservation analysis database analysis

cDNA Libraries	Q-ty
Undefined	1436
Normal	2387
Tumorous	4571

8394

Σ

The Results of Global CDD (UG build 129)

Range (number of	Number of	Number of	Tumor	Number of tumour related clusters at threshold, %								
ESTs per	ESTs	clusters		> 9	0 %	100%						
cluster)			E315, /0	observed	expected	observed	expected					
1-2	59111	44373	42%	18342	23073	18342	23073					
3-4	45400	13401	35%	1880	1884	1880	1884					
5-8	53569	8742	37%	567	279	567	172					
9-16	63421	5407	39%	168	5	99	4					
17-32	83968	3607	41%	45	0	17	0					
33-64	176845	3762	43%	16	0	2	0					
65-128	349008	3790	45%	10	0	2	0					
129-256	460493	2588	47%	8	0	0	0					
257-512	339482	975	50%	3	NA	0	NA					
513-1024	208171	303	53%	1	NA	0	NA					
1025-2048	130524	96	57%	0	NA	0	NA					
2049-4096	95180	36	60%	0	NA	0	NA					
4097-8192	49804	10	66%	0	NA	0	NA					
8193-16384	14725	1	67%	0	NA	0	NA					

FEBS Letters, 508 (2001), 143-148

Characteristics of Tumor-Related Cluster Set Discovered by CDD Baranova et al., 2001

- 251 clusters with 90% tumor specificity and 120 clusters with 100% tumor specificity were identified
- Contains several known tumor markers (MAGE family)
- Does not contain known oncogenes

• About half of this cluster set corresponds to transcribed sequences which do not have any known function (noncoding RNAs)

UniGene build 129: 2681 tumor + 1087 normal cDNA libraries 2.2*10⁶ ESTs; 90,000 clusters

CDD

251 clusters with 90% tumor specificity and 120 clusters with 100% specificity identified

56 clusters were experimentally analyzed on cDNA panels

For experimental confirmation of tumor specificity CLONTECH, BioChain and BMC Multiple Tissue cDNA panels containing sets of normalized first-strand cDNA from different human tumors and normal tissues were used

Normal panel: 43 samples from 29 normal and 8 fetal tissues Tumor panel: 63 samples from 28 tumors of different histogenesis

cDNA panels from normal human tissues

Ν	Human MTC Panel I	Ν	Human Immune MTC Panel	Ν	Human Digestive MTC Panel
1	Brain	1	Bone Marrow	1	Cecum
2	Heart	2	Fetal Liver	2	Colon, ascending
3	Kldney	3	Limph Node	3	Colon, descending
4	Liver	4	Peripheral Blood Leukocite	4	Colon, transverse
5	Lung	5	Spleen	5	Deodenum
6	Pancreas	6	Thymus	6	Esophagus
7	Placenta	7	Tonsil	7	lleocecum
8	Skeletal Muscle			8	lleum
Ν	Human MTC Panel II	Ν	Human Fetal MTC Panel	9	Jejunum
1	Colon	1	Brain	10	Liver
2	Ovary	2	Heart	11	Rectum
3	Peripheral Blood Leukocyte	3	Kidney	12	Stomach
4	Prostate	4	Liver		
5	Small Intestine	5	Lung		
6	Spleen	6	Skeletal Muscle		
7	Testis	7	Spleen		
8	Thymus	8	Thymus		

cDNA panels from different human tumors

Ν	Tumor cDNA Panel (BioChain)	Ν	Tumor cDNA Panel (Biomed N1)
1	Brain Astrocytoma	1	Lung carcinoma
2	Breast Invasive Ductal Carcinoma	2	Ovarian carcinoma
3	Lung Squamous Cell Carcinoma	3	Uterine carcinoma
4	Esophagus Adenocarcinoma	4	Cervical carcinoma
5	Stomach Adenocarcinoma	5	Ovarian and cervical carcinoma
6	Small Intestine Adenocarcinoma	6	Testicular carcinoma
7	Colon Adenocarcinoma	Ν	Tumor cDNA Panel (Biomed N2)
8	Hepatocellular Carcinoma	1	II stage lymphoma
9	Kidney Clear Cell Carcinoma	2	III stage lymphoma
10	Bladder Transitional Cell Carcinoma	3	IV stage lymphoma
11	Uterus Adenocarcinoma	4	Brain astrocytoma
12	Fallopian tube Medullary Carcinoma	5	Head-neck meningioma
13	Ovary Mucinous Adenocarcinoma	6	Breast cancers
14	Testis Seminoma		
15	Ureter Papillary Transitional Cell Carcinoma		
Ν	Human Tumor MTC Panel (Clontech)		
1	Breast carcinoma		
2	Lung carcinoma LX-1		
3	Colon Adenocarcinoma CX-1		
4	Lung Carcinoma GI-117		
5	Prostatic Adenocarcinoma		
6	Colon Adenocarcinoma GI-112		
7	Ovarian Carcinoma		
8	Pancreatic Adenocarcinoma		

UniGene build 129: 2681 tumor + 1087 normal cDNA libraries 2.2*10⁶ ESTs; 90,000 clusters

CDD

251 clusters with 90% tumor specificity and 120 clusters with 100% specificity identified

56 clusters were experimentally analyzed on cDNA panels

Nine *in silico* tumor-specific clusters experimentally confirmed as tumor-specific

Expression of 9 tumor-specific clusters in different tumors

Tumor localization	Hs.426704	Hs.128594	Hs.133107	Hs.202247	Hs.633957	Hs.389457	Hs.285026	Hs.516444	Hs.150166
Brain astrocytoma	0/1	0/1	0/1	0/1	0/1	0/1	1/1	0/1	1/1
Breast	4/8	1/8	8/8	6/8	7/8	4/7	3/7	1/7	6/7
Respiratory system	3/6	3/6	6/6	6/6	5/6	2/4	3/4	4/4	4/4
Esophagus	1/1	0/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
Stomach	0/2	0/2	2/2	2/2	2/2	1/2	1/2	0/2	2/2
Pancreas	1/1	0/1	1/1	0/1	0/1	N/A	N/A	N/A	N/A
Liver	1/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Small intestine	1/1	0/1	1/1	1/1	1/1	1/1	1/1	0/1	1/1
Colon	0/3	0/3	3/3	1/3	3/3	0/1	0/1	1/1	0/1
Kidney	0/1	0/1	1/1	1/1	1/1	1/1	0/1	0/1	1/1
Bladder	1/1	0/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
Ureter	0/1	0/1	1/1	1/1	1/1	0/1	0/1	0/1	0/1
Female genital system	4/15	6/15	13/15	13/15	15/15	6/14	4/14	0/14	12/14
Prostate	1/1	0/1	1/1	1/1	1/1	N/A	N/A	N/A	N/A
Testis	2/2	2/2	1/2	2/2	2/2	2/2	1/2	1/2	0/2
Lymphomas	2/7	6/7	7/7	7/7	7/7	7/7	0/7	0/7	7/7
Non-malignant	Breast cyst ,	Head	Breast cyst,	Breast cyst ,	Breast cyst ,	Head	Breast cyst,	Head	Breast cyst,
neoplasms	nead		neau	nead	nead		nead		nead
Normal tissues		PBL,	Lymph node,	-	Heart,	Sm. Intestine,	Bone marrow	Thymus	Heart,
		testis, thymus	thymus		liver	testis			luna

In some tumors, all studied clusters are expressed

Some clusters are expressed in almost all studied tumors

Southern Hybridization of Hs.154173 (Hs.426704) Fragment with Genomic DNA from Different Primate Species (Hind III)

1 2 3

1 Baboon 2 Orangutan 3 Human

	Results	s of PCR expe	riment	s* with	seque	ence-				
5	specific primers and comparative genomics data									
(obtained by homology analysis** within primates									
	Superfamily	Species\Transcript (EST Clusters)	AL040372 (Hs.13329 4)	AA166653 (Hs.42670 4)	Al952931 (Hs.12859 4)	Al792557 (Hs.13310 7)				
	Platyrrhini	Lemur catta	+	-	-	-				
	(New World monkeys)	Ateles fusciceps	+	-	+	+				
		Callimico goeldii	+	-	+	+				
	Cercopitecoidea	Colobus guereza	+	-	-	-				
	monkeys)	Erythrocebus patas	+	-	-	+				
		Cercopithecus aethiops	+	-	-	+				
		Macaca mulatta	(+)**	(+)	(+)	(+)				
	Hominoidea	Hylobates concolor	+	-	+	+				
	(Apes and Human)	Pongo pygmaeus (sumatran)	+	+	+	+				
		Pongo pygmaeus (bornean)	-	-	+	+				

Gorilla gorilla (sample 1)

Gorilla gorilla (sample 2)

Pan troglodytes (sample 1)

Pan troglodytes (sample 2)

Homo sapiens

DNA samples were ranged according to the existing classification of primates (Napier J. and Napier P., 1985).

÷

+

÷

÷

÷

+/-***

+

÷

÷

÷

÷

(+)

(+)

+

** Data in brackets are results of comparative genomics analysis (http://www.hgsc.bcm.tmc.edu/projects).

÷

÷

÷

+

Phylogenetic trees were constructed with neighbor-joining method using pairwise deletion and tested with 1000 bootstrap replicates

Hs.285026 – HHLA1

Chained alignments of Human Genome (May 2004) with *T. rubripes*, *D. rerio*, *G. gallus*, *C. familiaris*, *M. musculus*, *R. norvegicus*, *M. mulatta* and *P. troglodytes*

Insertion of HERV-H LTR created ORF in humans (Samusik et al., 2009; the result similar to that of Knowles and McLisaught, 2009)

Hs.202247 – Orthopedia Homolog conservation analysis

Genome-wide neutral evolution substitution rate (4-d degenerate sites)

Evolutionary novelty of tumor-specifically expressed sequences discovered by global CDD

UniGene build 129: 2681 tumor + 1087 normal cDNA libraries 2.2*10⁶ ESTs; 90,000 clusters

CDE

251 clusters with 90% tumor specificity and 120 clusters with 100% specificity identified

experimentally analyzed on cDNA panels

Nine *in silico* tumor-specific clusters experimentally confirmed as tumor-specific

Eight tumor-specific, (relatively) evolutionarily new sequences

(TSEEN sequences - tumor specifically expressed, evolutionarily new sequences)

Summary of comparative genomics analysis: Orthology

	Protein-Coding	Long Spliced	Short Non-spliced
Stand-Alone	Hs.285026 (HHLA1) Hs.46320 (SPRR1A) Hs.389457 (T)	Hs.150166 Hs.633957	Hs.426704 (rRNA repeating unit)
Intron- Mapped		Hs.202247 (OTP) Hs.128594 (CACNA2D3)	Hs.133107 (PVT1)

Specific for human

Specific for mammals

Specific for monkeys or apes

Neutral evolution vs conservatism

	Protein-Coding	Long Spliced	Short Non-spliced
Stand-Alone	Hs.285026 (HHLA1) Hs.46320 (SPRR1A) Hs.389457 (T)	Hs.150166 Hs.633957	Hs.426704
Intron- Mapped		Hs.202247 (OTP) Hs.128594 (CACNA2D3)	Hs.133107 (PVT1)

Constrained sequence

Neutrally evolving sequence

The Potential pre-miRNA Hairpin Encoded by Hs.633957 RNA

Northern hybridization of RNA from different tumor cell lines with anti-miRNA probe

293 H9 Panc PC

The 55 nt fragment may be the product of Drosha cleavage

The Secondary Structures of Potential pre-miRNA Hs.633957 and Its Orthologs

Interaction of Potential miRNA Hs.633957 and Its Orthologs With the Target Sites in DPYS (dihydropyrimidinase) mRNA

Human	miRNA
Human	DPYS

Chimp miRNA Chimp DPYS

Orangutan miRNA Orangutan DPYS

Macaque miRNA Macaque DPYS

Marmoset miRNA Marmoset DPYS

Lemur miRNA Lemur DPYS

	••••• ••••• 5	 15	25	69
5'	tcctggtcAc	tgctgtggc	atc	3'
3'	aggaccagGg	acgacaccg	tag	5'
5'	tcctggtcAc	tgctgtggc	atc	3'
3'	aggaccagGg	acgacaccg	tag	5'
5'	tcctggtcAc	tgctgtAgc	Gtc	3'
3'	aggaccagGg	acgacaCcg	Tag	5'
5'	tcctggtc~~	~actgtggc	atc	3'
3'	aggaccagGG	Gtgacaccg	tag	5'
5'	tcctggtcAc	Tgctgtggc	atc	3'
3'	aggaccagGg	Ccgacaccg	tag	5'
5'	tccTGgAcAc	TgcCGtgAc	GgcCcagGG	3'
3'	aggCTcAgGg	Gcg~~ac~g	AcgCgtcAG	5'

Evolutionarily novel gene coding for miRNA

(TSEEN gene - tumor specifically expressed, evolutionarily new gene)

TSEEN gene of long non-coding RNA (Hs.202247)

The second approach: tumor-specificity of established novel genes

PBVO1: a human orphan gene (Clamp et al., 2007)

PBOV1 is a protein coding gene that originated de novo in primate evolution

Single-exon gene, ORF encodes a 137-aa protein C-terminal 16% of sequence is human-specific Over 80% of protein sequence is absent from Rhesus and more distant species Start-codon doesn't exist in the majority of non-primate species Protein-coding sequence is not conserved, Ka/Ks ~ 1.0 Unusually high codon usage bias of 0.21 (p=0.004 over a random sequence)

PBV01 protein lacks known functional features

- Protein existence is confirmed by Western blot and MS/MS identifications
- Protein lacks any annotated or predicted domains
- Over 60% of protein is predicted to be disordered (IPSSP software)

PBOV1: Expression in normal tissues

A- Human MTC Panel 1, Human MTC Panel 2(Clontech, USA) B-Human Digestive System MTC Panel(Clontech, USA) C-Human Immune System MTC Panel, Human Fetal MTC Panel(Clontech, USA)

PBOV1: Expression in tumor tissues

BMC tumor panel

Novel Human Genes

(Clamp et al., 2007, Knowles and McLysaght, 2009) DCD, FAM9, HTN1, IL32, LACRT, OCLM, PRH2, C1orf61, CCLU1, DNAH10OS, DP6

<u>Genes expressed in tumors</u> <u>and in normal tissues</u>

FAM9, HTN1, IL32, LACRT, OCLM, PRH2, C1orf61, DNAH10OS <u>Genes expressed in</u> <u>tumors only</u>

CCLU1, DCD, DP_6

CLLU1

Knowles D. G. and McLysaght A. Recent de novo origin of human proteincoding genes [Genome Res. - 2009. -Vol. 19. - pp. 1752-1759.

CLLU1: Expression in normal tissues

A- Human MTC Panel 1, Human MTC Panel 2 (Clontech)B-Human Digestive System MTC Panel (Clontech)C-Human Immune System MTC Panel, Human Fetal MTC Panel (Clontech)

CLLU1: Expression in tumor tissues

BioChain Institute tumor panel (USA)

Probe DP_6

	Digestive MTC Panel									I	mm	nun	e M	TC	Pan	el		
Cecum	Colon, ascend. Colon, descend. Colon, trans.	Duodenum	Esophagus	lleocecum	lleum	Jejunum	Liver	Rectum	Stomach	Bone mar.	Fetal liver	Lymph node	PBL	Spleen	Thymus	Tonsil	NTC	DNA
																		and the second value of th

Tumors, **BioChain**

Distribution of CT genes among different genomes (NCBI: HomoloGene release 65)

Human CT genes on X chromosome

All other Human CT genes

Control genes myosins and keratins

FINDING A GENE HOMOLOG IN THE GENOME OF ANOTHER ORGANISM: BLAT Search Genome (UCSC Genome Browser)

Algorithm:

UCSC Genome Browser, University of California Santa Cruz Tool: BLAT

Results:

Gene family	CSAG	CT47	CTAG	GAGE	MAGEA	MAGEB	MAGEC	PAGE	SPANX	SSX	CT45	XAGE
Human gene number	2	12	3	16	13	7	2	7	11	14	6	9
Pan troglodytes gene number	1	2	1	(3)	4(5)	7	1	6	4	8	4	3
Pongo abelii gene number	1	4(1)	1	(1)	6(2)	7	1	5	4	8	3	3
Gorilla gorilla gene number	1	3(2)	2	(1)	6(2)	7	1	6	5	8	4	3(1)
Canis lupus gene number	0	0	0	0	0	0	0	0	0	0	0	0
Mus musculus	0	0	0	0	0	0	0	0	0	1	0	0
Danio rerio gene number	0	0	0	0	0	0	0	0	0	0	0	0
* dN/dS (average for family)	0,5	na	0,61	2,3	0,93	1,09	1,2	2,4	1,5	2,05	na	1,5

() - pseudogenes

* **Rapid evolution of cancer/testis genes on the X chromosome**// Brian J Stevenson // Ludwig Institute for Cancer Research and Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland // BMC Genomics // 23 may 2007

Processed pseudogenes expressed in tumors (from Zhang et al., 2003)

Table 5. Examples of Human Processed Pseudogenes With Medical Implications

Protein name	Gene name	No. of pseudogenes	Medical implications	MIM no.ª
Cyclohilin A, peptidyl-prolyl <i>cis_trans</i> isomerase A, (P05092)	PPIa, CYPA	63	Affects survival rates in human transplants, binds gag protein of HIV-1	123840
Glyceraldehyde 3-phosphate dehydrogenase (P04406)	GAPD	52	Overexpressed in lung cancer cells	138400
Nucleophosmin (P06748)	NPM1, NPM	34	More abundant in tumor cells than in normal resting cells	164040
Nef attachable protein (Q9P2Y3)		32	Attachable to human immunodeficiency virus type 1 Nef protein	
Prohibitin (P35232)	PHB	20	Possible tumor suppressor gene	176705
Hsc70-interacting protein, Hip (P50502)	ST13,HIP, SNC6	14	Suppression of tumorigenicity 13 (colon carcinoma)	606796
SET protein, HLA-DR associated protein II, PHAPII (Q01105)	SET	13	Myeloid leukemia associated, involved in human renal development and Wilms' tumor	600960
FSHD (Q14333)	FSHD	13	Facioscapulohumeral muscular dystrophy	606009
B lymphocyte activation-related protein BC-2048 (Q96PM7)		12	B-lymphocyte activation-related	
Translationally controlled tumor protein, TCTP, p23 (P13693)	TPT1	12	Tumor protein translationally controlled, histamine-releasing factor	600763
Melanoma antigen (Q9UMX8)		10	Melanoma antigen recognized by HLA-A1-restricted T-cells	
Retinoic acid receptor responder protein 2 (Q99969)	RARRES2, TIG2	10	Retinoic acid receptor responder protein 2 (tazarotene induced)	601973
Teratocarcinoma-derived growth factor 1, CRGF (P13385)	TDGF1, CRIPTO	6	Required for proper laterality development in humans, role in midline and forebrain development	187395
Small EDRK-rich factor 2, gastric cancer-related protein (Q9BZH7)	SERF2, FAM2C	6	Candidate gene for spinal muscular atrophy, gastric cancer-related	605054
Cytokeratin 19, CK 19 (P08727)	KRT19	4	Used as marker to detect micrometastatic tumor cells	148020

^aEntry in the OMIM database: Online Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/omim/).

Conclusions

1. Taken together, these results obtained by complementary approaches support the hypothesis of expression of evolutionarily novel genes, originated in DNA of germ cells, in tumors. This may be a new biological phenomenon analogous to the phenomenon of tumor-embryonic antigens.

2. A set of several novel genes may be expressed in a tumor. Novel genes are expressed in a broad spectrum of tumors suggesting the possibility of universal tumor markers.

Collaborators and co-authors

The Biomedical Center, St.Petersburg Molecular Biology Group

L.L.Krukovskaja, D.Polev, Yu.Nosova, I. Duhovlinov,

Bioinformatics Group

Y.Galachyants, N.Samusik, E.Shilov, T.Tyezhelova, P.Dobrinin, E.Matyunina *George Mason University, Fairfax* A.Baranova

The hypothesis of the possible evolutionary role of tumors in the origin of new cell types by means of expression of evolutionarily new genes in tumors.

Genetically or epigenetically predetermined tumors may play evolutionary role by providing conditions (space and resources) for expression of newly evolving genes. Tumors may be considered as proving ground, or reservoir, for expression of evolutionarily new genes which may lead to the origin of new cell types. Kozlov A.P. J. theor. Biol. (1979) 81, 1-17 Kozlov A.P. Medical Hypotheses (2010) 74, 177-185

The hood of Carassius auratus var. oranda is benign tumor

Skin Epithelium Papillomatous Neoplasms With Downgrowths

Papillomas With Deep Downgrowths

Exophytic Papillomas and Papillomatous Neoplasms

This result means that the benign tumor was artificially selected for in this variety of fish during several hundred years (Kozlov et al., 2012) Examples of pathologies and pathogens which may have adaptive and/or evolutionary importance

- Viruses may play an evolutionary role by transducing genes between different groups of organisms (Anderson, 1970; Reanney, 1974; Zdanov, Tikchonenko, 1974).
- Sickle cell trait provides some protection against Plasmodium falciparum, the parasite responsible for the most severe form of malaria (Allison, 1961; Livingstone, 19
- Mutational process

Example of tumor which have played role in evolution: Rhizobia – legumes symbiosis

Nitrogen-fixing root nodules of legumes symbiotically associated with Rhizobia are examples of a situation in which tumor acquires function in the organism.

Difference between tumors induced by Agrobacterium and Rhizobium

Kingdom – Bacteria Type – Proteobacteria Class – Alphaproteobacteria Subclass – Rhizobiales Genus Agrobacterium Family – Rhizobiaceae

Genus Rhizobium

Gall: proliferation of plant tissue similar to cancer growth

Nitrogen-fixing nodules on leguminous plant roots

Example of tumor which have played role in evolution: melanoma in Xiphophorus fishes

Macromelanophores – a novel cell type present in genus Xiphophorus. These macromelanophores are controlled by two genes, Tu gene and tumor suppressor R gene. Malignant tumor formation is promoted in back-cross progeny fishes with tumor suppressor deficient genotype.

We assume that in the course of evolution the reverse could happen. The origin of tumor suppressor gene could differentiate melanomas to generate new cell type of functional camouflagerelated melanocytes and stabilize the population of fishes previously highly predisposed to cancer.

Model of Genetically Determined Xyphophorus Melanoma

benign melanoma

Papillomatosis and Appearance of Macrovilli in the Rodent Stomach Vorontsov, 2003

The cardiac portion of the stomach in several rodent genera is lined with macrovilli developed from the growth of corneal epithelium. Microvilli favor development of symbiotic flora and are called symbiovilli.

Cases of hereditary malignant neoplasm giving rise to formation of multiple macrovilli in the cardiac portion of the stomach have been found in the vole Microtus abbreviatus.

It was assumed that the early stages of papillomatosis, by creating favorable conditions for symbiotic microflora, became advantageous and were selected.

Evolutionary approach to health and disease

Darwinian medicine

The integration of evolutionary biology with the health sciences brings to an overlapping discipline, termed Darwinian medicine, which takes an evolutionary approach to the entire spectrum of issues related to health and disease. For example, senescence is considered as a consequence of selection for traits that are beneficial during the early and middle years of life–span. Williams, G.C. and Nesse, R.M. 1991.The Dawn of Darwinian medicine. Q.Rev.Biol. 66, 1-22.

EVOLUTION OF INFECTIOUS DISEASE

PAUL W. EWALD

Evolutionary epidemiology

Evolutionary epidemiology broadens the scale of inquiry still further to assess

how the characteristics that traditional epidemiology has identified to be important – lethality, illness, transmission rates, prevalences of infection – change over time as hosts and parasites evolve in response to each other and to outside environments

Evolutionary oncology

We were looking for the evolutionary role of tumors (Kozlov, 1976, 1979, 1983, 1987, 1988, 1996, 2008).

Genetically or epigenetically predetermined tumors at the early stages of progression, or benign tumors, or some tumor-like processes which provide multicellular organisms with extra cell masses are considered as potentially evolutionarily meaningful, not malignant tumors at the late stages of progression

General oncology considers tumors as a broad biological phenomenon, which includes not only malignant tumors

616.006(02) Р-85 Академия медицинских наук ссср

РУКОВОДСТВО ПО ОБЩЕЙ ОНКОЛОГИИ

(В КРАТКОМ ИЗЛОЖЕНИИ ДЛЯ СТУДЕНТОВ-МЕДИКОВ И ВРАЧЕЙ ВСЕХ СПЕЦИАЛЬНОСТЕЙ)

> Под редакцией проф. Н. Н. ПЕТРОВА

ИЗДАНИЕ ВТОРОЕ, ДОПОДНЕННОЕ

7395

Textbook on General Oncology Prof.N.N.Petrov, ed. 1961 Leningrad, Academy of Medical Sciences of the USSR

ГОСУДАРСТЖЕННОВ ИЗДАТВЛЬСТВО МЕДИЦИНСКОЙ ЛИТЕРАТУРЫ М Е Д Г И Э ЛЕНИНГРАДСКОЕ ОТДЕЛЕНИЕ - 1961

Kalina and Kalina and
 Kalina and Kalina and
 Kalina and Kalina and

Comparative oncology discovered tumors in virtually all multicellular organisms

Comparative oncology suggests that tumors in lower vertebrates (e.g.fishes) have lower malignancy potential comparing with mammalian tumors

Widespread occurrence of tumors and tumor-like processes in multicellular organisms suggests that tumors might play some role (or several roles) in the evolution of species.

Features of tumors which could be used in evolution:
Gene activation in tumor cells
The ability of tumor cells to differentiate with concomitant loss of malignancy.

PBOV1 expression features and possible functional role

PBOV1 expression in tumors is partially explained by genomic features

1. The promoter sequence of PBOV1 gene is enriched in MYC-N binding sites (MYC-N is overexpressed in brain and lung cancers),

2. PBOV1 gene is situated in an intron of BIG3 gene (a member of the estrogen signalling pathway that is overexpressed in breast cancer and possibly other hormone-dependent tumors)

Hypothetical function of PBOV1

One non-synonymous SNP in PBOV1 is associated with increased breast cancer risk
Possibly a novel type of tumor suppressor, which is activated in the course of cancer progression and may trigger an immune response.

PBOV1 is a protein coding gene that originated de novo in primate evolution

- Single-exon gene, ORF encodes a 137-aa protein
- C-terminal 12% of sequence is human-specific
- Over 72% of protein sequence is absent from Rhesus and more distant species
- Start-codon doesn't exist in the majority of non-primate species
- Protein-coding sequence is not conserved, Ka/Ks ~ 1.0
- Unusually high codon usage bias of 0.21 (p=0.004 over a random sequence)