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Michael Snyder Reversed his Own Diabetes by Conducting The Most 
Extensive Medical Diagnostics Ever (Cell,  February 2012)  

26000 proteins and 1000 metabolites are measured  every month! 



…Unexpectedly, the cecum in germ-free 
mice swelled up to several times its 
normal size and the mice died. Mice 
without germs don’t develop normal 
intestines. ..

What did Michael Snyder Miss? 

The total size of bacterial genomes from Human Microbiome vastly 
exceeds the size of human genome. 

The number of bacterial cells in our body exceeds the number of human 
cells by an order of magnitude. 

Most human microbes represent dark matter of life, ie., their DNA 
cannot be sequenced with standard DNA sequencing technologies



Executive Medical Diagnostics in 2013?  
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What else did he miss?   
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Sequencing of Individual Tumor Cells for Early Cancer 
Diagnostics/Monitoring   
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Breakthroughs in Single Cell Genomics in 2011

• Sequencing phased human chromosomes
(Yang et al., PNAS 2011) 

• Tracing tumor evolution 
(Navin et al., Nature 2011)

• Studying tumor heterogeneity   
(Dalerba et al., Nature Biotech. 2011)

• Characterizing single cell transcriptome
(Islam et al., Genome Res. 2011) 

• Genome-wide haplotyping
(Fan et al., Nature Biotech. 2011)

• Analyzing uncultivated single cell organisms and 
revealing  the “gray matter of life”
(Yoon et al., Science, 
Yousseff  et al., AIM 2011, 
Chitsaz et al., Nature Biotech, 2011) 
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Tumor single cell sequencing
(from Navin et al., Nature 2011)  

February, 2012:
25 tumor cells sequenced

February, 2012:
58 tumor cells sequenced



Bacterial Single Cell Genomics

• Sequencing phased human chromosomes
(Yang et al., PNAS 2011) 

• Tracing tumor evolution 
(Navin et al., Nature 2011)

• Studying tumor heterogeneity   
(Dalerba et al., Nature Biotech. 2011)

• Characterizing single cell transcriptome
(Islam et al., Genome Res. 2011) 

• Genome-wide haplotyping
(Fan et al., Nature Biotech. 2011)

• Analyzing uncultivated single cell organisms  and 
revealing  the “gray matter of life”
(Yoon et al., Science, 
Yousseff  et al., AIM 2011, 
Chitsaz et al., Nature Biotech, 2011) 
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When Did Single Cell Sequencing Started? 



From Cloning to Single Cell Amplification 

Dean, Nelson, Giesler, Lasken. Genome Res, 2001
Dean,  Hosono,  Fang, ...,  Lasken. PNAS, 2002
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Genomic DNA

MDA uses random hexamer primers and phi29 DNA 
polymerase with exceptional ability to displace 
strands. 

Multiple
Displacement
Amplification
(MDA)

genome



Cycloproteins 

Over 50% of 
antibacterial and 
anticancer drugs are 
derived from natural 
products (many of them 
are cyclic and branch-
cyclic peptides)  

Daptomycin:  
blockbuster antibiotic  of 
last resort against MRSA



De Novo Sequencing of Cycloproteins is the Only 
Option Even When Genome is KNOWN

DNA makes RNA makes PROTEIN (central dogma) 

transcription               translation



De Novo Sequencing of Cycloproteins is the Only 
Option Even When Genome is KNOWN

DNA makes RNA makes PROTEIN makes … PEPTIDE

transcription               translation                   non-ribosomal peptide synthesis

Non-Ribosomal Peptides (NRPs) are 
excellent compounds for the development of 
pharmaceutical agents (NRP and other 
natural products represent 9 out of top 20 
bestselling drugs):  

• Antibiotics (penicillin, vancomicine, etc.),
• Immunosuppressors (cyclosporin),
• Antiviral agents (luzopeptin A), 
• Antitumor agents (bleomycin), 
•…………….

Without any RNA!
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From Seaside to Bedside 
Our colleagues at the Scripps Institute 
of Oceanography at UCSD found a 
cyclic peptide apratoxin, a very high 
priority anticancer toxin. Novel and still 
unknown mechanism of action

They wanted to sequence a 60Kb long 
aprotoxin gene (that codes for a protein 
producing apratoxin). 

Professor Bill Gerwick at 
work hunting for new  NRPs 

in New Guinea  
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Marine Cycloproteins 

Only 1 in 15,000 evaluated compounds becomes an approved 
drug entity

The success record of marine natural products is an order of 
magnitude better making them one of the most promising drug 
leads 

Single cell sequencing is usually the only way to go for 
marine bacteria (Grindberg et al., 2011) 



From Metagenomics to Single Cell Sequencing

• The lion’s share of bacteria in various environments cannot be 
cloned in the laboratory and thus cannot be sequenced using 
existing technologies. 

• Until recently, metagenomics was the only option for studies of 
microbial communities. However, metagenomics provides 
information about only a few genes (across many species).   
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From Metagenomics to Single Cell Sequencing

• The lion’s share of bacteria in various environments cannot be 
cloned in the laboratory and thus cannot be sequenced using 
existing technologies. 

• Until recently, metagenomics was the only option for studies of 
microbial communities. However, metagenomics provides 
information about only a few genes (across many species).   
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From Metagenomics to Single Cell Sequencing

• The lion’s share of bacteria in various environments cannot be cloned in the 
laboratory and thus cannot be sequenced using existing technologies. 

• Until recently, metagenomics was the only option for studies of microbial 
communities. However, metagenomics provides information about only a few 
genes (across many species).   

• Single Cell Bacterial Genomics: Complementing gene-centric metagenomics 
data with whole-genome assembly of uncultivated organisms. 
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1000s of genes sequenced from a single cell 



From Metagenomics to Single Cell Sequencing

• The lion’s share of bacteria in various environments cannot be cloned in the 
laboratory and thus cannot be sequenced using existing technologies. 

• Until recently, metagenomics was the only option for studies of microbial 
communities. However, metagenomics provides information about few genes 
(across many species).   

• Single Cell Bacterial Genomics: Complementing gene-centric metagenomics 
data with whole-genome assembly of uncultivated organisms. 
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Recently developed single cell assembler SPAdes captures up to 
96% of genome and up to 87% of genes from single cell. 

In proteomics or antibiotics discovery, capturing a great majority 
of genes is almost as useful as having a complete assembly.   



Introduction to Genome Sequencing 
(для школьников и академиков)



What Is Genome Sequencing?
• A genome can be represented as a book written in an alphabet 

containing only 4 letters, called nucleotides: A,T,G, and C.
– A human genome has roughly 3 billion nucleotides.

• Genome sequencing is the process of determining the 
sequence of nucleotides that make up a genome.

...CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGA
TCGATCGATCGATTATCTACGATCGATCGATCGATCACTATACGAGCTACTACGTACGTACGATCGCGGGACTATTATCGACTACA
GATAAAACATGCTAGTACAACAGTATACATAGCTGCGGGATACGATTAGCTAATAGCTGACGATATATAGCCGAGCGGCTACGATG
ATGCTAGCTGTACAGCTGATGATCTAGCTATCGATGCGATCGATGCGCGAGTGCGATCGATCACTTCGAGCTAGCTGATCGATCGA
TGCTAGCTAGCTGACTGATCATGGCGTTAGCTAGCTAGCTGATCGTCGATCGTACGTAGCTGATTACGATCGTCCGATCGTGCTAT
GACGTACGAGGCGGCTACGTAGCATGCTAGCTGACTGATGTAGCTAGCTATACGATACTATATATTCGATCGATTTATTACCATGA
CTGACGCGCATCGCTGTACACGTACTAGCTGATCGATGCTAGTCGATCGATCGATCATGTTATATATCGCGGCGCATCGATCGACT
GCTCGATTATCGATACGTCGATCGCTGTATATACGTCTTTATAGCTAGGAGCATAGCGACGCGCTATCGATCGATCGTCTAGTCGA
CTGATCGTACTAGCTGACGCTGACGACTAGCTAGCTATCGACGATCGTAGTGCGATTACTAGCTAGGATCCTACTGTACGTCAGTC
AGTCTGATCGATAGCGAGGAAAGCGAGACTGATCGTTCTCTAGATGTAGCTGATGTGACTACTATACTACTGGCAGCGATCGGGA…



What Is Genome Sequencing?

• Different people have slightly different genomes: all humans 
share 99.9% of the same genetic code. 

• The 0.1% difference  accounts for height,                       
eye color, high cholesterol susceptibility, etc. 

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGA
TCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTAT
CGATCGATCGATCGATTATCTACGATCGATCGATCGATCA
CTATACGAGCTACTACGTACGTACGATCGCGGGACTATTA
TCGACTACAGATAAAACATGCTAGTACAACAGTATACATA
GCTGCGGGATACGATTAGCTAATAGCTGACGATATCCGAT

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGA
TCAGCTACAACATCGTAGCTACGATGCATTAGCAAGCTAT
CGATCGATCGATCGATTATCTACGATCGATCGATCGATCA
CTATACGAGCTACTACGTACGTACGATCGCGTGACTATTA
TCGACTACAGATGAAACATGCTAGTACAACAGTATACATA
GCTGCGGGATACGATTAGCTAATAGCTGACGATATCCGAT



Species Sequencing vs. Individual 
Genome Sequencing

• Species Sequencing: Determine the “consensus genome” of 
an entire species.



Species Sequencing vs. Individual 
Genome Sequencing

• Individual Sequencing: Determine how an individual differs 
from its species. 



• Species genome sequencing:
– Compare various species (e.g. human and chimpanzee) to 

understand  how their genes function (e.g. which genes are 
important for brain
development).

– Reveal evolutionary
relationships between
species.

– Determine the genetic
makeup of our
evolutionary ancestors.

Why Would We Want to Sequence a 
Genome?



Why Would We Want to Sequence a 
Genome?

• Individual genome sequencing:
– Unearth the genetic basis of many diseases.
– Forensics applications.

• Example: In 2010, 6-year old Nicholas Volker became the 
first human being to be saved because of genome sequencing.
– Doctors could not diagnose his condition, which caused 

strange infections; he went through nearly 100 surgeries. 
– Genome sequencing revealed a rare                               

mutation in a gene linked to a defect in
his immune system.

– This led doctors to use advanced
immunotherapy, which saved the child.



Brief History of Genome Sequencing

• Late 1970s: Walter Gilbert and Frederick 
Sanger develop independent sequencing 
methods.

• 1980: They share the Nobel Prize in 
Chemistry.

• Still, their sequencing methods were too 
expensive for large genomes: with a $1 per 
nucleotide cost, it would cost $3 billion to 
sequence the human genome.

Walter Gilbert

Frederick Sanger



Brief History of Genome Sequencing

• 1990: The public Human Genome 
Project, headed by Francis Collins, 
aims to sequence the human 
genome. 

• 1997: Craig Venter founds Celera 
Genomics, a private firm, with the 
same goal.

Francis Collins

Craig Venter



Brief History of Genome Sequencing

• 2000: The draft of the human genome is simultaneously 
completed by the (public) Human Genome Consortium and 
(private) Celera Genomics. 



Brief History of Genome Sequencing

• 2000s: Many mammalian genomes are 
sequenced.



The Arrival of Personal Genomics

• 2000s: Many companies launch projects aimed at reducing 
sequencing costs by orders of magnitude.

• 2010-2011: The market for sequencing machines takes off.
– Illumina reduces the cost of sequencing an individual 

human genome from $3 billion to $10,000.
– Complete Genomics builds a genomic factory in Silicon 

Valley that sequences hundreds of genomes per month.
– Beijing Genome Institute orders over a hundred of 

sequencing machines, becoming the world’s largest 
sequencing center.

– 23andMe offers partial genome sequencing for $499.
– Many universities introduce new courses in which students 

study their own genomes.



The Future of Genome Sequencing
• 2012: Genome sequencing continues to bloom. 

– The $1,000 human genome is expected to arrive later this 
year.

– Leading medical centers in the US start the personalized 
medicine initiatives 

– Hopefully, sequencing an individual genome will soon 
become as routine as an X-ray. 



What Makes Genome Sequencing So 
Difficult?

• When we read a book, we can read the entire book one letter at a
time from the beginning to the end.

• However, modern sequencing machines cannot read an entire 
genome one nucleotide at a time from beginning to end.  They 
can only shred the genome and read the short pieces. 
– Thus, we can identify very short fragments of DNA (~100 

nucleotides long), called reads.
– But we have no idea which genomic positions these reads 

come from!
– We must figure out how to put the reads back together to 

assemble a genome.



The Newspaper Problem



The Newspaper Problem



The Newspaper Problem



The Newspaper Problem



The Newspaper Problem



The Newspaper Problem



The Newspaper Problem as an “Overlap 
Puzzle”

• The newspaper problem is not the same as a 
jigsaw puzzle:
– We have multiple copies of the same

edition of a newspaper.
– Plus, some pieces of paper got blown to 

bits in the explosion.

• Instead, we must use overlapping shreds of 
paper to reconstruct what the newspaper 
said.

• This gives us a giant overlap puzzle!



• In the newspaper problem, we have the rules of language and 
common sense (e.g. “murder” and “suspect” would often 
appear near each other in a newspaper.)

• However, the “language” of DNA remains largely unknown.

Sequencing is Harder than Newspaper 
Problem 



Sequencing is Harder than Newspaper 
Problem 

• There are lots of repeated substrings in every genome (50% of 
human genome is formed by repeats). 
• Example:  GCTT is repeated 4 times in the following: 

AAGCTTCTATTGCTTAATTGGCTTGCTTCGCTTTG

• Analogy: The Triazzle puzzle                                           
contains lots of repeated figures.                              
This makes it very difficult to
solve (even  with just 16 pieces).



Sequencing a Genome: Lab + Computation

• Read Generation (Experimental):
Generate many reads from multiple
copies of the same genome.

• Fragment Assembly (Computational):
Use these reads to algorithmically
put the genome back together.



Sequencing a Genome: Illustration
Multiple (Unsequenced) Genome Copies



Sequencing a Genome: Illustration
Multiple (Unsequenced) Genome Copies

Read Generation



Sequencing a Genome: Illustration
Multiple (Unsequenced) Genome Copies

Reads

Read Generation



Sequencing a Genome: Illustration
Multiple (Unsequenced) Genome Copies

Reads

Read Generation

Fragment Assembly



Sequencing a Genome: Illustration
Multiple (Unsequenced) Genome Copies

Reads

Sequenced Genome
…GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC…

Read Generation

Fragment Assembly



DNA Chips: From an Idea to a New Industry

• 1989: Radoje Drmanac, Andrey Mirzabekov, and 
Edwin Southern independently invent DNA chips 
(arrays) for read generation.

• Key Idea: Generate all k-mers (see below) from the 
genome in the hope that they can be assembled to 
reconstruct the genome.

• 1989: Science magazine writes, “Using DNA arrays for 
sequencing would simply be substituting one 
horrendous task for another.”

Southern

Mirzabekov

Drmanac

k-mer: A string of length k (in an alphabet of 4 nucleotides)



Short Read Sequencing and de Bruijn Graphs 

• 1988 (Drmanac, Mirzabekov, and 
Southern’s groups) suggested SBH 
as an  alternative to Sanger 
sequencing. Nobody believed it will 
ever work

• 1989 (P.P., JBSD 1989) de Bruijn         
approach for short read SBH assembly

• 2000: DNA arrays are a multi-billion 
dollar industry

First SBH array 
prototype (1989)

Short read sequencing was first proposed in 1988 under the name 
of DNA chips or Sequencing by Hybridization (SBH)

First commercial 
DNA chip by 
Affymetrix (1995)



Nicolaas de Bruijn

July 9, 1918 - February 17, 2012 



Why is Assembly of Single Cell Data Challenging? • I

• Orders of magnitude difference in read 
coverage between different regions 

• Elevated number of chimeric reads and 
chimeric read-pairs

• Elevated number of sequencing errors 

• Existing NGS assemblers were not designed 
to handle these complications:   

``challenges facing the single cell  
sequencing are increasingly 
computational rather than 
experimental” (Rodrigue et al. 2009)
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Coverage:
E.Coli standard data

Coverage:
E.Coli single cell data



De Bruijn Assemblers
– Idury and Waterman, JCB 1995 
– PP, Tang, Waterman,  PNAS 2001 (Euler) 
– PP, Tang, Tesler, Genome Res, 2004 (A-Bruijn assembly) 
– Chaisson and PP, Genome Res.  2008 (Euler-SR) 
– Zerbino  and Birney, Genome Res. 2008 (Velvet)
– Simpson et al., Genome Res. 2008 (ABySS) 
– Butler et al. Genome Res. 2008, Gnuerre et al. Genome Res. 2011 

(ALLPATHS)
– Li et al., Genome Res.  2010 (SOAPdenovo)
– and others …

– Idury and Waterman, JCB 1995 
– PP, Tang, Waterman,  PNAS 2001 (Euler) 
– PP, Tang, Tesler, Genome Res, 2004 (A-Bruijn assembly) 
– Chaisson and PP, Genome Res.  2008 (Euler-SR) 
– Zerbino  and Birney, Genome Res. 2008 (Velvet)
– Simpson et al., Genome Res. 2008 (ABySS) 
– Butler et al. Genome Res. 2008, Gnuerre et al. Genome Res. 2011 

(ALLPATHS)
– Li et al., Genome Res.  2010 (SOAPdenovo)
– and others …

None of them works well with single cell data. 
No error correction tool works well with single cell data. 



Read Coverage: Multicell vs. Single Cell
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E. coli read coverage: logarithmic  scale 



How NGS Assemblers Handle 
Variations in Coverage?
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• Multicell reads: read coverage distribution is uniform  
(average coverage 600X).  

• Single cell reads:  read overage varies widely along 
the genome (from no coverage to 10000X).

• In single cell projects, correct segments may have 100 
times lower coverage then erroneous segments, thus 
confusing NGS assemblers. 

• Existing assemblers (e.g. Velvet) impose a coverage 
cutoff to avoid assembly errors.  Large cutoff 
eliminates 25% of valid single cell data. Small cutoff 
leads to many assembly errors.



How NGS Assemblers Handle 
Variations in Coverage?
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• Multicell reads: coverage 
distribution is centered sharply at 
600X (average coverage).  

• Single cell reads:  coverage varies 
widely across the entire range (from 
no coverage to 10000X  and higher). 

• In single cell projects, correct 
segments may have coverage 10 
and erroneous segments may have 
coverage 1000, thus confusing NGS 
assemblers. 

• Existing assemblers (e.g. Velvet) 
impose a coverage cutoff to avoid 
assembly errors.  A cutoff threshold 
eliminates 25% of valid data in the 
single cell case! 

Red: multicell coverage 
Blue (or green): single cell coverage



E+V-SC Single Cell Assembler
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 E+V-SC (Euler+Velvet-Single Cell assembler) adapted 
components from EULER and Velvet.

Chaisson & PP, Genome Res. (2008) 
Zerbino  & Birney,  Genome Res. (2008) 

• Error correction in reads from EULER.

• Instead of a global threshold on coverage for the whole de Bruijn 
graph in Velvet, E+V-SC is adapted to local conditions.

• E+V-SC has 28% increase in genome coverage and  23% increase 
in the number of captured genes as compared to Velvet. 

Chitsaz et al., Nature  Biotech. 2011



E. coli: Single Cell Assemblies
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E+
V-

SC

Matching
contigs

Different lengths, fragmented,
missing in one assembly, etc.

Chitsaz, et al., Nature Biotech. 2011



Rescuing Low Coverage Contigs
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Removing the lowest coverage blue
contig (edge in de Bruijn graph) rescues 
the low coverage purple contig 



Rescuing Low Coverage Contigs
After removal of erroneous contig
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Merged red-green-purple contig:

while purple regions has low coverage, AVERAGE  
coverage across the entire contig is high (preventing 
the removal of the low coverage purple region) 



Our assembly algorithm (“E+V-SC”)

(a) EULER-SR error correction

(b) Velvet-SC assembly algorithm
1-7: Same as Velvet assembly algorithm.

8: for i =2 to cutoff do
9: Remove vertices with average coverage < 

10: Clip tips of graph.
11: Correct graph by the Tour Bus algorithm.
12: Resolve repeats using read pairing.
13: Condense graph by merging 1-in1-out vertices.
14: end for
15: Return vertices of graph as contigs.

Velvet assembly algorithm
1: Build a roadmap rdmap from R by indexing all k-

mers.
2: Build a de Bruijn pregraph pg from rdmap.
3: Clip tips of pg.
4: Build a graph from pg by threading R.
5: Condense graph by merging 1-in 1-out vertices.
6: Clip tips of graph.
7: Correct graph by the Tour Bus algorithm.
8: Remove vertices with average coverage <
9: Clip tips of graph.

10: Correct graph by the Tour Bus algorithm.
11: Resolve repeats using read pairing.
12: Condense graph by merging 1-in 1-out vertices.
13: Return vertices of graph as contigs.

Velvet vs. Velvet-SC

cutoff i

Zerbino & Birney, Genome Res. (2008) 18:821-
829

Chitsaz et al., Nat. Biotechnol. (2011)
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Velvet is an open source de Bruijn graph based de novo assembler from EBI.



Single Cell Assemblies: 
Capturing 600 Extra E. coli Genes with E+V-SC

Assembler # contigs N50 (bp) Assembly 
size

Genes

EULER
Edena

SOAPdenovo
Velvet

E+V-SC

1344
1592
1240
428
501

26662
3919
18468
22648
32051

4369634
3996911
4237595
3533351
4570583

3178
2425
3021
3055
3753

N50 = the contig length at which longer contigs represent half of the 
total genome length.
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New Marine Genome: Deltaproteobacterium

Assembler # of 
contigs

N50 
(bp)

Length 
(bp)

# Conserved 
single copy 

genes 

Velvet 1,856 11,531 3,921,396 55/111 
(46%)

E+V-SC 823 30,293 4,282,110 75/111 
(67%)
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Over 3800 genes are fully assembled by E+V-SC
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New Genome 
Deltaproteobacteria (marine bacteria) single cell assembly 

features

Assembly size 4.3 Mb

Estimated genome size 4.9-6.4 Mb

# assembled genes 3811

Chitsaz, et al., Nat. Biotechnol. (2011)
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How Complete Are Single Cell Assemblies? 

# tRNA genes 20 out of 20 types

# tRNA synthetases 17 of 21 types

# rRNAs 1 each of 5S, 16S, 23S

# conserved single copy genes 75 out of 111 (67%)

# conserved single copy gene clusters 58 out of 66 (87%)

• Jonathan Badger at Venter Institute annotated 
Deltaproteobacterium single cell assembly using metrics 
from Nelson et al., Science (2010)

• Conclusion: single cell Deltaproteobacterium assembly is 
similar  in quality to standard microbial assemblies (before 
finishing)

Chitsaz, et al., Nature Biotech. 2011



Future Work

• We plan to do sequencing and de novo assembly of more 
unknown single cell genomes, in collaboration with Roger 
Lasken, JCVI and Pavel Pevzner and Glenn Tesler, UCSD.

• This may revolutionize environmental microbiology and 
metagenomics. 

• Medical application in hospitals to sequence drug resistant 
pathogens is a future direction.

• As we get more data, we may be able to model MDA 
biases, potentially using Machine Learning techniques, and 
design more efficient algorithms to correct such biases. 
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Agenda

• Fragment Assembly Problem

• De Bruijn Graph

• Paired de Bruijn Graph

• Results

• Questions

• Fragment Assembly Problem

• De Bruijn Graph

• Paired de Bruijn Graph

• Results

• Questions



Fragments Assembly Problem

• Previous approaches:
– Overlap-layout-consensus

– De Bruijn Graph

• New Approach: Paired de Bruijn graph

• Previous approaches:
– Overlap-layout-consensus

– De Bruijn Graph

• New Approach: Paired de Bruijn graph



From E+V-SC to SPAdes Assembler 

•In single cell projects, correct segments may have coverage 10 and 
erroneous segments may have coverage 1000, thus confusing NGS 
assemblers. 

•SPAdes tries not to use coverage in assembly decisions

La Jolla                                Saint Petersburg 

+
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Fragment Assembly Problem: 
from Reads to Read-Pairs

DNA Sequencing 
Machine

Genome

Genome 
Assembler

read-pairs

????????

Utilization of paired-end reads remains an open 
problem

4



From de Bruijn Graphs to Paired de Bruijn Graphs

• Assembling genome from k-mers (reads): 
elegant de Bruijn graph algorithm.

• Assembling genome from paired k-mers 
(read-pairs): not so elegant post-processing 
heuristics on de Bruijn graphs that often fail in 
repeat regions. 

• Utilization of paired reads remains arguably 
the most poorly explored area of assembly. 

Medvedev et al., JCB 2011: assembly of 
paired k-mers using Paired de Bruijn 
Graphs (PDBG). 
Finally, an elegant but IMPRACTICAL
approach to assembling paired k-mers 

Saint
Petersburg
Assembler:
SPAdes



Deja vu from 2001 

• Paired de Bruijn graphs are impractical 
since distances between reads within 
read-pairs are imprecise 

• But in 1995 de Bruijn graphs were not 
very practical either! At least for Sanger 
reads circa 1995…



Historic Reference

If reads were made nearly error-free in 2001, can we 
make distances between reads nearly exact in 2012? 
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Error Correction (2001) Read-Pair Adjustment (2012)

Error-prone reads Read-pairs with variable insert sizes

PP, Tang, 
Waterman, PNAS 
2001

PP, Tang, 
Waterman, PNAS 
2001

Bankevich et al. 
JCB 2012 
Bankevich et al. 
JCB 2012 
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Error Correction Read-Pair Adjustment

Error-prone reads Read-pairs with variable insert sizes

PP, Tang, 
Waterman PNAS 
2001

PP, Tang, 
Waterman PNAS 
2001

Bankevich et al. 
JCB 2012
Bankevich et al. 
JCB 2012

graph edge graph edge 
exact 

distance 
exact 

distance 

exact  
distance 

graph edge 

graph edge graph edge 

graph edge 

This 
sequencing 
machine 
produces 
edge-pairs 
instead of  
read-pairs



De Bruijn Assemblers
– Idury and Waterman, 1995 
– Euler, Pevzner et al., 2001
– Euler-SR: Chaisson and Pevzner 2008
– Velvet: Zerbino  and Birney 2008
– ABySS: Simpson et al., 2008
– ALLPATHS: Butler et al., 2008, 2011
– SOAPdenovo: Li et al., 2010
– and others …

– Idury and Waterman, 1995 
– Euler, Pevzner et al., 2001
– Euler-SR: Chaisson and Pevzner 2008
– Velvet: Zerbino  and Birney 2008
– ABySS: Simpson et al., 2008
– ALLPATHS: Butler et al., 2008, 2011
– SOAPdenovo: Li et al., 2010
– and others …

None of them works well with single cell data. 
No error correction tool works well with single cell data. 



Reconstructing Genome from k-mers
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TAG

AGG

GGA
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ACA

CAT

Reconstruct 
Genome
from its       
3-spectrum

Generate a 3-mer at each position of a 
cyclic Genome=ATCAGATAGGAC. 
Generate a 3-mer at each position of a 
cyclic Genome=ATCAGATAGGAC. 

The k-spectrum of Genome is the set of all 
k-mers of Genome.
The k-spectrum of Genome is the set of all 
k-mers of Genome.

genome



Reconstructing Genome from k-mers
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Reconstructing Genome from k-mers

ATC

TCA

CAG

AGA

GAT

ATA

TAG

AGG

GGA

GAC

ACA

CAT



Reconstructing Genome from k-mers
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The Bridges of Königsberg

• The people of Königsberg, Prussia (present-day Kaliningrad, 
Russia) enjoyed taking walks.



The Bridges of Königsberg
• They wondered if they could walk through the city, cross each 

bridge (blue) exactly once, and return where they started.



The Bridges of Königsberg

• 1735: Leonhard Euler develops an approach to 
answer this question for any city, even for a 
“city” with a billion islands.

Leonhard Euler



The Icosian Game

• Over a century passes…

• 1857: Irish mathematician 
William Hamilton designs a 
game consisting of a board 
representing 20 “islands”
connected by “bridges.”

• Goal: find a walk that visits 
every island exactly once 
and returns back where it 
started.

William Hamilton

Icosian Game



Similar Problems with Very Different 
Fates 

• These two stories have something in common: 
– Find a walk that uses every bridge once 

(Konigsberg Bridges Problem) 
– Find a walk that visits every island once (Hamilton  

game)

• However, while Euler solved the first problem (even 
for a city with a million bridges), mathematicians still 
do not know how to solve the second problem, even 
for a city with a million islands.  

• But where are the genomes???
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AT TC
TC

CA
CA

AG

AG

GA

GA

AT
AT

TA
TAAG

AG
GG

GG

GA

GA

AC

AC

CA

CA
AT

Represent each k-mer as an 
edge from its prefix to its          
suffix. E.g., ATC is 
represented as AT→TC

Edges corresponding to 
consecutive k-mers share a 
node with the same label:  
prefix(ATC)=suffix(TCA)=TC. 

Glue identically 
labeled nodes

Represent each k-mer as an 
edge from its prefix to its          
suffix. E.g., ATC is 
represented as AT→TC

Edges corresponding to 
consecutive k-mers share a 
node with the same label:  
prefix(ATC)=suffix(TCA)=TC. 

Glue identically 
labeled nodes

De Bruijn Graph Approach



De Bruijn Graph
(presented as A-Bruijn graph, PP, Tang, Tesler, Genome Res. 2004) 

• De Bruijn graph of a k-spectrum:
– Represent every k-mer as an edge between its prefix 

and suffix

– Glue ALL nodes with identical labels.

• De Bruijn graph of a k-spectrum:
– Represent every k-mer as an edge between its prefix 

and suffix

– Glue ALL nodes with identical labels.



De Bruijn Graphs and Node Gluing
AT TC

TC

CA
CA

AG

AG

GA

GA

AT
AT

TA
TAAG

AG
GG

GG

GA

GA

AC

AC

CA

CA
AT



De Bruijn Graphs and Node Gluing
AT TC

TC

CA
CA

AG

AG

GA

GA

AT
AT

TA
TAAG

AG
GG

GG

GA

GA

AC

AC

CA

CA
AT De Bruijn graph = gluing ALL

nodes with same labels.
De Bruijn graph = gluing ALL
nodes with same labels.
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De Bruijn Graph: Gluing in Progress
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De Bruijn Graph: Gluing in Progress



CA
GA

TA

AG

GG

AT
TC

Genome is an Eulerian cycle in the de 
Bruijn graph but we don’t know how 
Genome traverses the graph beyond 
branching vertices.

Genome is an Eulerian cycle in the de 
Bruijn graph but we don’t know how 
Genome traverses the graph beyond 
branching vertices.
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Repeats – A major problem in 
genome assembly

Repeats: A major problem for fragment assembly
• More than 50% of human genome is repeats

• over 1 million Alu repeats (about 300 bp)
•about 200,000 LINE repeats (1000 bp and longer)

Repeats: A major problem for fragment assembly
• More than 50% of human genome is repeats

• over 1 million Alu repeats (about 300 bp)
•about 200,000 LINE repeats (1000 bp and longer)



From Reads to Read-Pairs 

Genome
Read 1 Read 2

Insert Size



From k-mers to paired k-mers

Genome
Read 1 Read 2

Insert Size

Distance d

Example: ...A T C A G A T A G G A C…

CAG AGG

d=5

31

A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.     
E.g.  CAG and AGG are at distance d=5 apart. 
A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.     
E.g.  CAG and AGG are at distance d=5 apart. 



Utilizations of Read-Pairs in de Bruijn Assemblers 

Read-pair transformation (PP and Tang, ISMB 2001)
•Map the read-pairs to the edges of the de Bruijn graph
•Find a unique path between these mapped reads 
•The length of this path equal to the insert size.  
•Transform the pair of SHORT reads into a LONG virtual read
•Assemble long virtual reads

Read-pair transformation (PP and Tang, ISMB 2001)
•Map the read-pairs to the edges of the de Bruijn graph
•Find a unique path between these mapped reads 
•The length of this path equal to the insert size.  
•Transform the pair of SHORT reads into a LONG virtual read
•Assemble long virtual reads

A D

B
E

C

VELVET and ALLPATHS describe related approaches to utilize read-pairs. VELVET and ALLPATHS describe related approaches to utilize read-pairs. 



Utilizations of Read-Pairs in de Bruijn Assemblers 

Read-pair transformation (PP and Tang, ISMB 2001)
•Map the read-pair to the edges of the de Bruijn graph
•Find a unique path between these mapped reads 
•The length of this path equal to the insert length.  
•Transform the pair of SHORT reads into a LONG virtual read
•Assemble long virtual reads

Read-pair transformation (PP and Tang, ISMB 2001)
•Map the read-pair to the edges of the de Bruijn graph
•Find a unique path between these mapped reads 
•The length of this path equal to the insert length.  
•Transform the pair of SHORT reads into a LONG virtual read
•Assemble long virtual reads

A D

B
E

• Read-pair transformation fails when there exist multiple paths between 
reads  



What Would de Bruijn Do? 

Read-pair transformation fails when there exist multiple paths between readsRead-pair transformation fails when there exist multiple paths between reads



Paired de Bruijn graph

Medvedev et al., J. Comp. Biol. 2011
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To assemble the original sequence, which graph do we want?To assemble the original sequence, which graph do we want?
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AT

AT TC

How to get rid of these excessive glues?



Reconstructing Genome from Paired Spectrum 

A

A

A

T

G

T
C

C
A

G
AA

G

ATC|GAT
TCA|ATA

CAG|TAG

AGA|AGG

GAT|GGA

ATA|GAC
TAG|ACA

AGG|CAT

GGA|ATC

GAC|TCA

ACA|CAG

CAT|AGA

Generate all paired 3-mers 
of Genome (read starts 
separated by  distance 4)

A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.

The paired k-spectrum of Genome:  all paired k-mers of Genome (for a fixed distance d). 

A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.

The paired k-spectrum of Genome:  all paired k-mers of Genome (for a fixed distance d). 

Reconstruct 
Genome from 
its paired        
3-spectrum



Paired de Bruijn Graph

ATC|GAT

TCA|ATA

CAG|TAG

AGA|AGG

GAT|GGA

ATA|GAC
TAG|ACA

AGG|CAT

GGA|ATC

GAC|TCA

ACA|CAG

CAT|AGA

TC|AT

CA|TA

CA|TA

AG|AG

AG|AG

GA|GG

GA|GG

AT|GA

AT|GA

TA|AC
TA|ACAG|CAAG|CA

GG|AT

GG|AT

GA|TC

GA|TC

AC|CA

AC|CA

CA|AG

CA|AG
AT|GA

AT|GA TC|AT

Glue nodes with 
identical labels!
Glue nodes with 
identical labels!

paired prefix of ATC|CAT  → ← paired suffix of ATC|CAT



Paired de Bruijn Graph

• Paired de Bruijn graph of a paired k-spectrum:
– Represent every paired k-mer as an edge between 

its paired prefix and paired suffix. 

– Glue ALL nodes with identical labels.

• Paired de Bruijn graph of a paired k-spectrum:
– Represent every paired k-mer as an edge between 

its paired prefix and paired suffix. 

– Glue ALL nodes with identical labels.



Paired de Bruijn Graph: Gluing in Progress

TC|AT

CA|TA

CA|TA

AG|AG

AG|AG

GA|GG

GA|GG

AT|GA

AT|GA

TA|AC
TA|ACAG|CAAG|CA

GG|AT

GG|AT

GA|TC

GA|TC

AC|CA

AC|CA

CA|AG

CA|AG
AT|GA

AT|GA TC|AT
Glue nodes with 
identical labels!
Glue nodes with 
identical labels!

?



Paired de Bruijn Graph: Gluing in Progress

TC|AT
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TA|AC
TA|ACAG|CAAG|CA

GG|AT
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GA|TC

AC|CA

AC|CA

CA|AG

CA|AG
AT|GA

AT|GA TC|AT
Glue nodes with 
identical labels!
Glue nodes with 
identical labels!

?



Paired de Bruijn Graph

CA|TA

AG|AG

GA|GG

AT|GA

TA|ACAG|CA

GG|AT

GA|TC

AC|CA

CA|AG

AT|GA
TC|AT

Glue nodes with 
identical labels!
Glue nodes with 
identical labels!



Paired de Bruijn Graph

CA|TA

AG|AG

GA|GG

TA|ACAG|CA

GG|AT

GA|TC

AC|CA

CA|AG

AT|GA

TC|AT
Glue nodes with 
identical labels!
Glue nodes with 
identical labels!



Cumulative Contig Length:
EXACT insert size 

Cumulative
length of 
m longest
contigs

m contigs m contigs

E. ColiE. Coli Human (Chr. 22)Human (Chr. 22)

k-mer size = 50k-mer size = 50

For EXACT distance d=1000 (let alone 5000), the PDBG approach generates 
an excellent assembly of human genome even with very short reads (k=50).



Cumulative Contig Length:
EXACT Distance between Reads 

Cumulative
length of 
m longest
contigs

m contigs

Human Human 

k-mer size = 50k-mer size = 50

For EXACT distance d=1000 (let alone 5000), the PDBG approach generates 
an excellent assembly even with very short reads (k=50).



Number of repeated paired k-mers 
drops as distance d increases

Number of repeated paired k-mers 
for k=50 and varying distance d

Number of repeated paired k-mers 
for k=50 and varying distance d

For distance d=4000, from the perspective of paired 50-mers, the E. coli genome 
has no repeats. Assembly becomes trivial!



Back to Reality: 
Distances between Reads are INEXACT

The 
distances 
between 
reads lie 
within some 
range          
d ±Δ.

Genome

Distance d

Distance d + Δ

a b

b b’

d d +Δd -Δ



Constructing Paired de Bruijn Graph from 
Paired k-mers with Approximate 

Distances 
Genome

Distance d

Distance d + Δ

a b

a’=a b’

If paired k-mers (a|b) and (a’|b’) are generated at the same position
of the genome:

•a = a’
•b and b’ should be at distance at most 2Δ apart in Genome

If paired k-mers (a|b) and (a’|b’) are generated at the same position
of the genome:

•a = a’
•b and b’ should be at distance at most 2Δ apart in Genome

If b and b’ are at distance at most 2Δ in Genome, they should be at 
distance at most 2Δ in the de Bruijn graph!
If b and b’ are at distance at most 2Δ in Genome, they should be at 
distance at most 2Δ in the de Bruijn graph!

Note: “Distance” in these slides is different from the one described in the paper

But the Genome is unknown!But the Genome is unknown!

• Paired k-mers (a|b), (a’|b’) are SIMILAR if: 
1. a = a’
2. b and b’ are at distance at most 2Δ in the de Bruijn graph. 

• Paired k-mers (a|b), (a’|b’) are SIMILAR if: 
1. a = a’
2. b and b’ are at distance at most 2Δ in the de Bruijn graph. 



Approximate Paired de Bruijn 
Graph

• Approximate Paired de Bruijn graph of a 
paired k-spectrum:
– Represent every paired k-mer as an edge between 

its paired prefix and paired suffix: 

– Glue ALL nodes with SIMILAR labels.

• Approximate Paired de Bruijn graph of a 
paired k-spectrum:
– Represent every paired k-mer as an edge between 

its paired prefix and paired suffix: 

– Glue ALL nodes with SIMILAR labels.

The notion of “SIMILAR” is defined in Medvedev et al., 2011



Cumulative Contig Length
(fixed insert size, varying k-mer size)  

Insert size = 1000Insert size = 1000

Cumulative
length of 
m longest
contigs

m contigs m contigs

E. ColiE. Coli Human (Chr. 22)Human (Chr. 22)



Cumulative Contig Length:
INEXACT Distance (with error Δ)

Insert size = 1000, k = 50Insert size = 1000, k = 50

Cumulative
length of 
m longest
contigs

HumanHuman

For INEXACT distance, the assembly quickly deteriorates even for 
small distance error, e.g.,  Δ=20
For INEXACT distance, the assembly quickly deteriorates even for 
small distance error, e.g.,  Δ=20



Cumulative Contig Length:
INEXACT insert size (with error Δ)

Insert size = 1000, k = 50Insert size = 1000, k = 50

Cumulative
length of 
m longest
contigs

E. ColiE. Coli Human (Chr. 22)Human (Chr. 22)

For INEXACT distance d, the assembly deteriorates even for small 
distance error, e.g.,  Δ=20
For INEXACT distance d, the assembly deteriorates even for small 
distance error, e.g.,  Δ=20



The Key Deficiency of Paired de Bruijn Graphs

Medvedev et al., 2011: assembly of paired k-mers using 
Paired de Bruijn graphs (PDBG).  Finally, an elegant 
approach to assembling paired k-mers BUT …
PDBGs only work when the EXACT (or nearly exact) 
distances between reads within read-pairs are  known. 



Deja vu from 2001 

• Paired de Bruijn graphs are impractical 
since distances are imprecise 

• But in 1995 de Bruijn graphs were not 
very practical either! At least for Sanger 
reads circa 1995…



Historic Reference

If reads were made nearly error-free in 2001, can we 
make distances between reads nearly exact in 2012? 
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Error Correction (2001) Read-Pair Adjustment (2012)

Error-prone reads Read-pairs with variable insert sizes

PP, Tang, 
Waterman PNAS 
2001

PP, Tang, 
Waterman PNAS 
2001

Bankevich et al. 
JCB 2012 (in press)
Bankevich et al. 
JCB 2012 (in press)
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Error Correction Read-Pair Adjustment

Error-prone reads Read-pairs with variable insert sizes

PP, Tang, 
Waterman PNAS 
2001

PP, Tang, 
Waterman PNAS 
2001

Bankevich et al. 
JCB 2012 (in press)
Bankevich et al. 
JCB 2012 (in press)

graph edge graph edge 
exact 

distance 
exact 

distance 

exact  
distance 

graph edge 

graph edge graph edge 

graph edge 

This 
sequencing 
machine 
produces 
edge-pairs 
instead of  
read-pairs



What is the Correct Genomic Path between Edges A and B? 

Is the correct path between red reads 
short (passing through lower edge)  
or long (passing through upper edge)?

59

A
B

Variation in insert size
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A
B

While original read-pairs have large errors in distance estimates (e.g. 
210 ± 40 bp), nearly 100% of edge-pairs feature exact distances after 
distance adjustment by SPAdes 



Representing Edge-Pairs as Rectangles

ATG    TGC   GCC   CCA   CAG   AGG

Blue line starts in (TCT|GTC) 
and ends in (ACG|AAG)

condensed edge 
in de Bruijn graph



Generating Rectangles
De Bruijn graph with 6 condensed 
edges P1,…, P6

(ACG|AAG
)

(TCT|GTC)

ending 
blue 
point

starting 
blue 
point

P3

P2

P6 

P5

P4

P1



Rectangle Graph
(yet another A-Bruijn graph) 

• Rectangle graph on edge-pairs:
– Represent every edge-pair formed by edges  and  at 

distance D as a blue edge within a rectangle (D). The 
blue edge connects its starting and ending nodes labeled 
as: 

startd(D) → endd(D)

– Glue ALL nodes with identical labels

• Rectangle graph on edge-pairs:
– Represent every edge-pair formed by edges  and  at 

distance D as a blue edge within a rectangle (D). The 
blue edge connects its starting and ending nodes labeled 
as: 

startd(D) → endd(D)

– Glue ALL nodes with identical labels



Rectangle Graph Assembly

(TCT|GTC)

(ACG|AAG)



What if Distance Estimates Are (Slightly) Imprecise?  

(TCT|GTC)

(ACG|AAG)



Benchmarking SPAdes: 
87% of E. coli genes fully captured from single cell data

Bankevich et al., J. Comp. Biol., 2012



Ongoing SPAdes Collaborations

• Sequencing  uncultivated bacteria representing gray 
matter of life (Roger Lasken, Venter Institute)

• Sequencing  pathogens  isolated from hospital 
environment (Jeff McLane, Venter Institute)

• Sequencing antibiotics producing bacteria (Bill 
Gerwick, Scripps Institute of Oceanography)

• Sequencing drug-resistant pathogens (Nik Schork, 
Scripps Translational Medicine)
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Open Problems in Algorithmic Biology (1st)

August 27-29, 2012

http://bioinf.spbau.ru/ab2012

RECOMB-AB brings together leading researchers in the mathematical, computational, 
and life sciences to discuss current challenges in computational biology, with an 
emphasis on open algorithmic problems. The program will consist of invited speakers, 
contributed speakers, posters, and discussion panels.

Submission Deadline: April 27, 2012

Open Problems in Algorithmic Biology (1st)

August 27-29, 2012

http://bioinf.spbau.ru/ab2012

RECOMB-AB brings together leading researchers in the mathematical, computational, 
and life sciences to discuss current challenges in computational biology, with an 
emphasis on open algorithmic problems. The program will consist of invited speakers, 
contributed speakers, posters, and discussion panels.

Submission Deadline: April 27, 2012

Bioinformatics Education (4th)

August 26, 2012

http://bioinf.spbau.ru/be2012

RECOMB-BE will consist of invited 
presentations, oral presentations selected 
from submitted educational problems, and 
discussion panels, all of which focus on 
improving bioinformatics education.

Submission Deadline: May 7, 2012

Bioinformatics Education (4th)

August 26, 2012

http://bioinf.spbau.ru/be2012

RECOMB-BE will consist of invited 
presentations, oral presentations selected 
from submitted educational problems, and 
discussion panels, all of which focus on 
improving bioinformatics education.

Submission Deadline: May 7, 2012Due to the close deadlines, contact us right away if 
you are interested but would need a short 
extension.

RECOMB 2012 Satellite Conferences in Saint Petersburg, Russia


